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ARTICLE INFO . ) . '
Network null models are important to drawing conclusions about individual- and population-(or graph)

level metrics. While the null models of binary networks are well studied, recent literature on weighted
networks suggests that: (1) many so-called ‘weighted metrics’ do not actually depend on weights, and (2)
many metrics that supposedly measure higher-order social structure actually are highly correlated with
individual-level attributes. This is important for behavioural ecology studies where weighted network
analyses predominate, but there is no consensus on how null models should be specified. Using real
social networks, we developed three null models that address two technical challenges in the networks
of social animals: (1) how to specify null models that are suitable for ‘proportion-weighted networks’
based on indices such as the half-weight index; and (2) how to condition on the degree- and strength-
sequence and both. We compared 11 metrics with each other and against null-model expectations for 10
social networks of bottlenose dolphin, Tursiops aduncus, from Shark Bay, Australia. Observed metric
values were similar to null-model expectations for some weighted metrics, such as centrality measures,
disparity and connectivity, whereas other metrics such as affinity and clustering were informative about
dolphin social structure. Because weighted metrics can differ in their sensitivity to the degree-sequence
or strength-sequence, conditioning on both is a more reliable and conservative null model than the more
common strength-preserving null-model for weighted networks. Other social structure analyses, such as
community partitioning by weighted Modularity optimization, were much less sensitive to the under-
lying null-model. Lastly, in contrast to results in other scientific disciplines, we found that many
weighted metrics do not depend trivially on topology; rather, the weight distribution contains important
information about dolphin social structure.
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The social network paradigm is increasingly being used to study
the behavioural ecology of social animals. It holds the promise of
expanding the field from investigations about the presence and
fitness consequences of associations to understanding the pattern
of associations, including how network structures persist over time
or serve ecological functions. For example, whereas researchers
have plenty of ideas why animals may be social (e.g. for antipred-
ator defence, foraging) and can demonstrate that one's position in
the network can lead to higher fitness (Stanton & Mann, 2012), it is
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more controversial to posit functional importance to structural
properties of networks themselves. Consider bottlenose dolphins
Tursiops spp., where patterns such as triangle-closure, assortativity
by sociality, and the presence of ‘social brokers’ between different
subgroups are features that are more than just individual-level
tendencies to have a certain number of associates. Hypotheses
about the ecological function of such ‘social structure’ are few and
tentative (Pinter-Wollman et al., 2014), such as facilitating infor-
mation transmission (Allen, Weinrich, Hoppitt, & Rendell, 2013;
Lusseau, 2003). Behavioural ecology remains significantly chal-
lenged by the difficulty of defining and measuring social structure.
Here, we try to identify which network metrics may be informative
about dolphin social structure, and which are redundant to
individual-level differences in sociality, such as individual
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differences in ‘degree’ (number of associates) and ‘strength’ (sum of
weights of associates).

We employ a null-model approach: to calculate expectations of
weighted network metrics while conditioning on individual-level
properties, and compare such expectations to the observed met-
rics. For example, if we observe a network and accept its empirical
degree-sequence (the number of connections each individual has in
the network), then how are we to interpret other network metrics
and judge whether they provide evidence of an underlying orga-
nizing structure? What metric values are likely even when there are
no true underlying structures like ‘clusters’ or true organizing
principles like ‘assortativity’? It is by comparing metric values to
their null-model expectations that allows us to find potentially
meaningful metrics that actually measure aspects of higher-order
social structure, or whether metrics are merely redundant to
individual-level attributes.

Despite the simplicity of the null-model approach, there is little
consensus on how to calculate expectations of network metrics. Two
challenges emerge: (1) one must decide what properties to condi-
tion upon (e.g. strength-sequence, degree-sequence, both or others);
and (2) one needs a way to calculate expectations without biasing
results. Behavioural ecologists primarily address these challenges by
conditioning on aspects of survey design, observation error and
sociality (Whitehead, 2008), and primarily use permutation
methods to calculate expectations under random associations
(Bejder, Fletcher, & Brager, 1998). Outside of behavioural ecology,
there is a growing suite of ‘random-graph’ algorithms (Ansmann &
Lehnertz, 2011; Leskovec, Chakrabarti, Kleinberg, Faloutsos, &
Ghahramani, 2010; Prettejohn, Berryman, & McDonnell, 2011;
Serrano, Bogund, & Pastor-Satorras, 2006; Watts & Strogatz, 1998)
which emphasize core properties such as the degree-sequence,
strength-sequence, network size and density; they have shown
that unless such properties are held constant across random-graphs,
then any conclusions about network properties will just reflect
variation in the degree-sequence, strength-sequence, network-size,
etc. There is a near consensus about the need to condition on the
degree-sequence for binary networks, but the matter is more
controversial for weighted-networks, and one's conclusions are
sensitive to such conditioning (Garlaschelli & Loffredo, 2009;
Mastrandrea, Squartini, Fagiolo, & Garlaschelli, 2014).

This paper follows in the spirit of Garlaschelli and Loffredo
(2008), to calculate metric expectations based on null models
that assume only basic individual-level properties, and to do so
by generating an ‘ensemble’ of random networks based on the
Exponential Random Graph formulation. In contrast, our equations
are valid for proportion weighted-networks, w;; € [0,1] used in
behavioural ecology (Cairns & Schwager, 1987). An advantage of
this method is its principle of ‘maximum entropy’ to produce an
ensemble of networks that makes the fewest assumptions, thereby
ensuring that we have randomized all other topological and weight
patterns that could be misconstrued as social structure. The
method is similar to permutation-based and random-graph algo-
rithms in that they offer null models conditioned on simple as-
sumptions. However, permutation-based and random-graph
algorithms do not necessarily guarantee that their ensembles do
not have structural correlations or biases that are mere artefacts of
the randomization algorithm (Garlaschelli & Loffredo, 2008).

We specified three different null models that are constrained to
the degree-sequence (Topology Null Model, TNM), strength-
sequence (Weighted Null Model, WNM), and both (Mixed Null
Model, MNM) for proportion-weighted networks. We derive the
probability distributions for the TNM, WNM and MNM and apply
them to 10 years of association data from a well-studied population
of bottlenose dolphins, Tursiops cf. aduncus, in Shark Bay, Western
Australia (Mann, Stanton, Patterson, Bienenstock, & Singh, 2012).

Three aims of this study are:

(1) to compare how well observed individual-level network
metrics correspond to null-model expectations, for three null
models;

(2) to compare averages of whole network metrics to their null-
model expectations, especially as a function of network size
N (an ongoing controversy in network science; e.g. see
Anderson, Butts, & Carley, 1999);

(3) to compare how inferences about network community
structure differ according to the null-model used via
Modularity optimization (Squartini & Garlaschelli, 2011).

For aims 1 and 2, we focus on 11 popular node-level metrics
used in analyses of animal societies, such as clustering, affinity,
centrality, dispersion and connectivity.

The method of Garlaschelli and Loffredo (2009) caused consid-
erable upset in other disciplines. For example, Garlaschelli and
Loffredo (2009) discovered that some weighted measures ‘inherit’
trivially from topological features and called for ‘a systematic
redefinition of weighted network properties’, while Mastrandrea
et al. (2014) noted that ‘the strength sequence is in general unin-
formative about the higher-order properties of the network’. The
implications for behavioural ecologists are that: (1) many
weighted-network metrics may not depend on weights per se and
actually depend on the underlying binary, topological patterns; and
(2) that many metrics of higher-order structure are not significantly
different from (and often highly corrected with) the values one
would expect from networks with only individual-level constraints
(degree and/or strength).

The above claims were supported over a broad range of net-
works, such as food-webs, online social networks and financial/
trading networks. If the conclusions of Garlaschelli and Loffredo
(2009) and Mastrandrea et al. (2014) generalize to animal social
networks, then it would be a setback to behavioural ecology studies
based on network metrics. For example, if clustering and affinity
metrics were merely redundant to individual-level attributes, and
did not measure higher-order properties as intended, they would
produce misleading conclusions about ‘social structure’, as defined
as higher-order structure that is more than the sum of individuals
(Holland & Leinhardt, 1979; Faust, 2006). However, the methods
and insights from integer-weighted networks cannot be accepted
naively for proportion-weighted networks. We show that the
eastern gulf Shark Bay dolphins stand as a contrary case to the
many and varied networks considered by Garlaschelli and Loffredo
(2009) and Mastrandrea et al. (2014).

METHODS
Data

Our data source is a 31-year long-term study of over 1500
individually identified bottlenose dolphins resident in the eastern
gulf of Shark Bay, Western Australia (Mann et al., 2012). Associa-
tions among individual dolphins were estimated from opportu-
nistically encountered groups during boat-based surveys, using a
10 m chain rule to define in-situ group membership (Smolker,
Richards, Connor, & Pepper, 1992). We truncated the data to
include noncalf individuals encountered at least five times each
year within a constant spatial and temporal domain. The constant
space-time domain was evaluated in the following way: (1) we
included surveys that occurred between May and November; (2)
per year, we calculated a minimum convex hull (MCH) which
enveloped all georeferenced encounters; (3) we used the spatial
intersection of all 10 per-year MCHs to define a small region of
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consistent spatial surveillance; (4) we smoothed the perimeter of
the constant spatial domain by adding a 2500 m spatial buffer.
Annual pairwise associations were estimated using the Half-weight
index (Cairns & Schwager, 1987) to generate networks for each year
between 2003 to 2012 (for a total of 10 networks). In total, 209
individuals were included. Forty-one per cent of individuals
occurred in just one network and 4% occurred in all 10 networks.
The number of nodes N per year varied from 18 individuals in 2005,
to 122 individuals in 2004 (mean 61.4, SD 32). The range of network
sizes facilitated our study of the behaviour of empirical and ex-
pected metrics under variable N. The number of survey days varied
from 36 in 2005 to 98 in 2003 (mean 66.0, SD 19.5).

Null-models

In the following description, we denote a weighted network as
being fully described by its weight matrix W with individual nodes i
and the strength of association between nodes i and j denoted w;; €
[0,1]. It is symmetric and undirected, w;j = wj;. Some key metrics are
strength s; = Zf‘#jw,»j (the sum of a node's weights given that a
node has n neighbours) and the strength-sequence
S =(51,52,...,5n), as well as degree k; = Z?¢j1[wij>0} (the sum
o_f) a node's binary connections), and the degree-sequence
k = (k1,k27 ceey kN)

The goal of this paper is to calculate an unbiased expectation of a
network metric, ¢; (e.g. clustering coefficient) here indexed to in-
dividual i, but whose calculation may include all pairs or triplets in
the network. To do this, we need a method to generate the
ensemble of networks 7%~ whose expected strength- and/or
degree-sequence are the same as our observed weighted network,

i.e. 8 ,ps = E[ 0]. The expectation E[c;] is calculated over the entire
ensemble, whereby each constituent network (W’) in the ensemble

contributes a value in proportion to its probability P(W’}?) con-
ditional on property 6. The ensemble is approximated by drawing

a large number of random networks from P(W|7). The expected
value of a metric value is approximated by taking the average over
the random draw of networks, denoted (c;); ie.

Elc]= 3 pW'[0)c(W)=(c).
Wew

The challenge is to define P(W|7) and sample from it. The un-
derlying assumption of the distribution is that the initial cost of
forming an association is greater than maintaining an existing tie,
as developed by Garlaschelli and Loffredo (2008; 2009), but unlike
their work, our equations respect the [0,1] bound for weights in a
proportion-weighted network. The mathematical details are in the
Appendix. The key point is that by specifying the probability dis-
tribution according to the Exponential Random Graph model, we
ensure that the resulting ensemble of networks is maximally
rancg)m in all regards aside from the user-specified constraints (e.g.
s, k). For example, the topology (who is connected to whom) is
maximally randomized, as well as the pattern of weights on this
topology.

Our analysis was repeated for 10 networks based on annual field
surveys conducted during the austral winter and spring. One
example network is shown in Fig. 1. The steps of the analyses were
as follows. (1) We derived the probability and expectation functions
of weights for the three null models (TNM, WNM and MNM;
detailed in the Appendix). (2) We specified the maximum entropy
ensemble of networks by setting the ensemble average properties
(strength- and/or degree-sequence) to the observed values and
solving node-specific parameters (known in the field of
constrained-optimisation as ‘Lagrangians’, also detailed in the
Appendix). Solving these parameters fully specifies the ensemble

and was repeated for each observed network and each null-model.
(3) We approximated the maximum entropy ensemble for each
empirical network by taking a large sample (1000) of random
networks drawn from P(W), using the probability distribution
function of weights from step 2. The construction of each ensemble
was performed for each year's empirical network and each null-
model, for a total of 30 network ensembles. (4) Metrics' expecta-
tions were calculated using the ensembles and were compared to
the observed networks' values; we also looked for patterns among
the different metrics, their residuals and by sex. The metric ex-
pectations were calculated per metric x per individual x per year x
per null-model, but we simplified the comparison by looking for
global patterns over all years, by metric and null-model, resulting in
the 11 x 3 scatter plots in Figs. 2—4 and correlation coefficients in
Table 1. (5) We calculated population-level averages and intervals
of metrics and compared these to the population averages and in-
tervals of the observed networks. (6) We compared the commu-
nities implied by each null-model by performing community
partitioning by Modularity optimization, using the expectations of
weights according each null-model. Inferred communities were
compared within each year for all pairs of null models.

Node-level Metrics

For each node-per-year, we calculated 11 weighted metrics. We
focused on affinity and clustering/transitivity metrics, which are
intensely studied second- and third-order properties (Barrat,
Barthélemy, Pastor-Satorras, & Vespignani, 2004; Garlaschelli &
Loffredo, 2009; Mastrandrea et al., 2014; Serrano et al., 2006). We
also calculated some metrics that are recommended for animal
societies (Wey, Blumstein, Shen, & Jorddn, 2008; Whitehead, 2008)
as well as weighted versions of Freeman's centrality indices
(Freeman, 1979).

The expectations of the 11 different metrics were calculated for
each node-per-year and per null-model (TNM, WNM, MNM). To
simplify the comparisons of observed versus expected, we sum-
marize our results by metric and null-model, according to: (1) the
Pearson's correlation coefficient Ro; and (2) the partial correlation
coefficient Ryyesr (Cohen, West, Aiken, & Cohen, 2003), after
removing variation explained by year (and therefore different
network sizes). In both cases, it was individual dolphins (per year)
that constitute individual data points for the correlation statistics.
The two R statistics helped contextualize the degree to which the
null-model expectations were similar to observed values across all
individual dolphins (i.e. high Ro and high Ryjye,) or just for popu-
lation averages (high Ro but lower Ryjyear).

We used the following weighted metrics.

C° weighted closeness centrality, a measure of short paths to all
other nodes (Freeman, 1979; Opsahl, Agneessens, & Skvoretz,
2010). We predicted that all null models should be able to predict
node-level values of (%, inasmuch as individuals' strength and de-
gree are inversely related to the path length to other nodes, e.g. if
high-degree and high-strength individuals have a greater tendency
to have short paths across the network.

C® weighted betweenness centrality, how well an individual
connects different subsets or clusters (Freeman, 1979; Opsahl et al.,
2010). High C’-individuals may be important for global propagation
of information, disease, etc. Because randomized graphs should not
have substructures, C’ is not expected to be well predicted by any
null-model.

C* eigenvector centrality, a measure of the centrality of a node's
neighbours (Butts, 2008). It is the most succinct representation of
the total variation in a network along a single dimension (i.e. the
dominant social dimension). Inasmuch as a network's total varia-
tion is driven by individuals' tendency to associate with others of a
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similar degree/strength (i.e. degree/strength-assortativity) C°
should be fairly redundant to degree- and strength-preserving null
models.

' Laplacian centrality, a measure of the sensitivity of a network
to node deletions (Qi, Fuller, Wu, Wu, & Zhang, 2012). It addresses an
enduring interest in wildlife conservation about the resilience of
animal societies to targeted removal of important individuals
(Williams & Lusseau, 2006). For example, odontocetes societies may
be particularly resilient to deletions because of the peculiar degree-
distribution (flat at small degrees and scale-free otherwise; Lusseau,
2003). If this is the case, then the degree-sequence may be sufficient
to produce expected values of C! close to their observed values.

k™ degree-affinity, the weighted average nearest neighbour
degree. It is a second-order measure used to diagnose degree
assortativity: whether individuals preferentially associate with
those who have a similar degree.

s" strength-affinity, a second-order measure similar to k™, but
estimates neighbours' strength instead of degree. It is the recom-
mended affinity metric for animal societies (Kasper & Voelkl, 2009;
Whitehead, 2008). Mastrandrea et al. (2014) demonstrated the
remarkable predictability of k™ and s™ from degree- and strength-
sequence null models for a variety of social and nonsocial networks,
and we anticipated similar results.

c Holme clustering coefficient, a third-order measure of link
transitivity, as recommended by Whitehead (2008), which com-
pares the number of closed-triangles versus triplets around a node.
Null-models should have no great ability to predict the presence of
cliques, clustering, or the lack thereof (unlike the results of
Mastrandrea et al., 2014).

c® Opsahl geometric-mean clustering coefficient, another third-
order measure of transitivity. While similar to ¢, it has a different
way to score the number of triangles versus triplets around a node,
and was designed to serve generally in weighted network analyses
(Opsahl & Panzarasa, 2009).

T" cost-integrated triangle count, another measure of transitivity
and the simplest third-order metric. T is simply the count of tri-
angles around a node, but is generalized for weighted networks via
the technique of cost integration (Ginestet, Nichols, Bullmore, &
Simmons, 2011).

Y disparity, a measure of the dispersion of weights around a
node. It helps to contextualize whether an individual has just a few
strong connections or many weak connections (Barthélemy, Barrat,
Pastor-Satorras, & Vespignani, 2005; Whitehead, 2008). The metric
compares an individual's strength metric to its degree, which for
proportion-weighted weights are inherently related: s;<k;
Therefore, disparity based on proportion-weights is expected to be
predictable when both strength- and degree-sequences are set, but
not when either is randomized.

r° reach, a measure of indirect correctness, calculated as the total
strength of a node's neighbours (Whitehead, 2008). Because the
measure depends heavily on the strength of individuals, it is ex-
pected to be well predicted by the strength-preserving models,
WNM and MNM, but not TNM.

Metric Correlations

Social structure is often identified (and sometimes defined) by
patterns among network metrics, such as k versus k™ for degree-
(dis)assortativity. We compared network metrics pairs by inspect-
ing plots and calculating a nonlinear metric of association, the
Maximal Information Coefficient (MIC; Reshef et al., 2011) whereby
MIC < [0,1] shows perfect agreement at 1. We also used metric
residuals (i.e. the difference between an observed metric and its
null-model expectation) as another candidate for identifying
structure. Such residuals may be more informative than observed

0) Female
e Male

HW=0.2

—— HW=0.5

— HW=1.0

Figure 1. Example visualization of the social network of eastern gulf Shark Bay bot-
tlenose dolphins for the year 2007. Associations are calculated from group encounters
using the Half-Weight index.

metrics in that they may partially standardize metrics for different
network size and densities. We also explored the distributions of
metrics by males and females. We computed the Jensen-Shannon
distance (D;s € [0,0.69]) to quantify which metric distributions
were strongly different by males and females. We note that
the residuals, MIC and Dys are not fundamental to the null-model
approach. Rather, the null-model expectations can help uncover
patterns that may be difficult to discern among the raw metrics.

Lastly, we also compared the network metrics to other non-
network metrics to probe for artefacts of the survey design or
sampling procedure, such as comparing metrics to simple indices of
over-representation of certain individuals in the data. We used the
number of surveys and years in which a dolphin was encountered,
*UV€Y and Y%9" respectively.

Model Comparisons

We estimated null-model support by calculating likelihood
values and AIC weights (Mastrandrea et al., 2014). The comparisons
were made among the three null models, per empirical network.
The log-likelihood is conditional on dolphin-specific parameters
X, ¥, also called Lagrangian multipliers, which are used to ensure
that each dolphins' degree-/strength-sequence have equal values
between their observed and ensemble averages (see Appendix).
The log-likelihood is:

log#(W|X,y) = logP(W|X,y) = > logq(wy|x,y) (1
i<j

Calculation of the AIC is —2log2(W|X',y’) + 2k, where k is the
number of model parameters. For the TNM and WNM, there is one
parameter for each individual in the network (k = N), while there
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Figure 2. Network metrics of individual dolphins in Shark Bay, observed (x-axis) versus expected values (y-axis) according to the Mixed Null Model, conditioning on strength- and
degree-sequence. C° closeness, C” betweenness, C* Laplacian centrality, C¢ eigenvector centrality, c© Opsahl clustering, ¢ Holme clustering, r° reach, s™ strength-affinity, k™" degree-
affinity, Y disparity, T* triangle-count. Different colours and symbols represent different networks (i.e. metrics are calculated within the context of a single network).
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Figure 3. Network metrics of individual dolphins in Shark Bay, observed (x-axis) versus expected values (y-axis) according to the Weighted Null Model, conditioning on strength-
sequence. C° closeness, C* betweenness, C* Laplacian centrality, C° eigenvector centrality, c® Opsahl clustering, ¢ Holme clustering, r° reach, s™ strength-affinity, k™ degree-affinity,
Y disparity, T* triangle-count. Different colours and symbols represent different networks (i.e. metrics are calculated within the context of a single network).
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Figure 4. Network metrics of individual dolphins in Shark Bay, observed (x-axis) versus expected values (y-axis) according to the Topology Null Model, conditioning on degree-
sequence. C° closeness, C” betweenness, C- Laplacian centrality, C° eigenvector centrality, c® Opsahl clustering, c" Holme clustering, r° reach, s™" strength-affinity, k™ degree-affinity,
Y disparity, T* triangle-count. Different colours and symbols represent different networks (i.e. metrics are calculated within the context of a single network).

are two parameters for every individual dolphin in the MNM Community Structure

(k= 2N). The AIC weights sum to 1 for each empirical network, and

high values suggest better agreement between model and observed To assess how the different null models can influence inferences
data, while penalizing model complexity. about fundamental network structure, such as clustering into
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Table 1
Correlations between observed and expected node-level metric values, by metric
and null-model

Node-level metric TNM WNM MNM

R% R%\year R% R%\year R% R%\year
Laplacian centrality 0.633 0435 0985 0979 0983 0.976
reach 0.38 0343 0941 093 0.936 0.923
closeness centrality 0921 0.724 0937 074 0.925 0.612
disparity 0.845 0836 0682 0704 0.874 0.865
eigenvector centrality 0.29 0.213 0.709 0.686 0.722 0.7
triangle count 0.664 0.753 0295 02838 0.674 0.702
strength-affinity 0.153 0.017 0421 0.281 0.346 0.034
betweenness centrality 0.081  0.045 0.317 0.287 0302 0.27
degree-affinity 0169 0.156 0.161 0204 0204 0.017
clustering (Holme) 0.057 0.16 0.072 0.155 0.142  0.247
clustering (Opsahl) 0.114 0.184 0078 0.104 0.114 0.181

R% is the squared zero-order correlation pooled over 10 years of association data, per
null-model (TNM, WNM and MNM). R%‘year is the squared partial-correlation, which
removes the trend over years and shows the within-year correlations. The TNM
conditions on the degree-sequence, the WNM conditions on the strength-sequence,
and MNM conditions on both. Value >0.6 are bold for emphasis.

communities, we performed network partitioning by Modularity
optimization, per year, according to four null models: the TNM,
WNM, MNM, plus the default ‘bilinear’ strength-preserving model
of Newman (2004). Modularity is a measure of fragmentation of a
network into densely connected clusters with sparse connections
between clusters, and is a popular optimization criterion for finding
discrete communities (Whitehead, 2008). Weighted Modularity
can be generalized for any null-model by substituting the expected
weights (E[w;;] = (w;;)) into the Modularity score Q = %mzij(wgbs -
(wij))é(ci, ¢j) (Squartini & Garlaschelli, 2011), where 6(c;,¢j)=1 if i
and j are in the same community, ¢ is a vector of community
membership, and s is the total strength of observed network W.
We used the spectral optimization techniques of Donetti and
Munoz (2004) and Simonsen (2005) for community partitioning.
The number of communities (L) was inferred by optimizing Q with
respect to L. We also optimised over all algorithm parameters such
as: use of the graph Laplacian (Donetti & Munoz, 2004) vs. the
transfer matrix (Simonsen, 2005); the number of eigenvectors; and
the clustering criterion (average, complete, McQuitty's, single, and
Ward's criterion). The general method is known to have good
performance (Fortunato, 2010) and we benchmarked it against
exhaustive simulated annealing (Bélisle, 1992).

This analysis resulted in different estimated communities per
year and per null-model, for a total of 40 different community
partitionings. To calculate the similarity between two partitionings,
we used the Corrected Rand Index, which is useful when the
number of communities may differ (see R package fpc Hennig,
2014). The statistic takes values O to 1, where 1 is perfect agree-
ment between communities. Only communities within each year
are comparable to each other.

RESULTS

To examine the performance of the null models, we compared
the expected metrics they generated with the observed values
(Figs. 2—4). Null-models that generate expected values that
strongly correlate with observed metric values suggest that a lot of
the variation is due to individual-level attributes. Our general
finding is that MNMs, which conditions on both the degree- and
strength-sequence, performed best based on the high correlation
between observed and expected metric values and high AIC
weights (Fig. 2 and Table 1).

Across all null models, some metrics were consistently more
predictable than others: Laplacian centrality, reach and disparity
showed high predictability, with R% values >0.8 between observed
and expected values across all models. Of the other metrics, cor-
relations were weaker, with nonuniform scattering of residuals. For
example, most observed affinity values clustered along the 1:1 line
with a long-tailed distribution of lower-than-expected values.
Likewise, most clustering values were higher than expected, and
rarely fell below the expected values. This last pattern was only true
when considering all years combined, and did not hold within
years. Within years, the correlation between observed and ex-
pected clustering metrics was low, with R% values <0.3, and the
scatter plots showed a near-flat relationship.

Overwhelmingly, the AIC weights suggested greatest support for
the MNM. The MNM had w{,, > 0.99 for nine out of 10 networks.
Only the smallest network of N =18 individuals was supported by
the TNM (w4l§, = 0.784).

Metrics Versus Network Size

Fig. 5 shows the robust trend lines regressing observed and
MNM expected values versus network size, whereby each year had
a different network size. Very similar results were obtained when
comparing metrics to changes in weighted density (but we omit the
results because of the high correlation between N and weighted
density, Ppearson >0.95). Betweenness centrality, degree-affinity,
strength-affinity and reach all showed increasing values with
increasing network size, consistent between empirical and ex-
pected networks. Likewise, closeness centrality, Laplacian central-
ity, eigenvector centrality and disparity had decreasing values with
increasing N, consistent between observed and expected networks.
Even when the observed individual metric values were poorly
predicted, the MNM none the less made good approximations of
the networks' averages as well as the trend over N. In the case of
affinity, which was poorly predicted at the individual level, the
trend and intercept were nearly identical at the population level.
The trend in transitivity measures showed marked deviation from
MNM expectations, whereby clustering and triangle counts were
higher than expected, and the disagreement between the observed
and expected values increased as N increased.

Patterns Among Metrics

Inspecting metrics' residuals (i.e. the observed values minus the
expected values) and their relationship among other metrics can
lead to insights into social structure. We focused on those metrics
that were least predictable by strength and/or degree, such as the
cluster coefficients (c%,cf), strength- and degree-affinities (s" k™),
and eigenvector and betweenness centrality (C%,C%). Some residuals
seemed to tightly cluster around 0, suggesting that the majority of
individuals had values that were predictable solely by degree and
strength-sequence alone, while off-zero residuals had erratic pat-
terns on either side of the zero line, such as for s™, k™, and espe-
cially CB. Those exceptional individuals that strongly deviated from
expectations could be worthy of further investigation. Considering
only the MNM, the clustering coefficients had residuals that
seemed to be distributed uniformly and randomly with respect to
most other metrics and were generally uncorrelated with other
metrics, suggesting that clustering uniquely measures some aspect
of social biology which all the other metrics do not. For clustering,
the largest association by MIC was between the CB-residual and the
cf-residuals with MIC =0.363 (where MIC is defined on [0,1]),
which was likewise the largest MIC for %, suggesting a weakly
negative relationship between clustering and betweenness, i.e.
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individuals that are high social brokers tend to cluster less than
expected.

In contrast to clustering, the residuals of the affinity metrics
showed a strong correlation with other metrics. We observed a
concave positive relationship between pairs (s,s™) and (k,k™)
which indicates strength/degree-assortativity, whereby high-
strength/degree individuals tend to associate with other high-
strength/degree individuals. However, this regression had an MIC
of 0.516 and conditional mutual information (CMI) of 0.701, and
ranked lower than the pair (C* - residuals,s™ - residuals), with MIC
0.644 and CMI 0.758. Together, the residuals revealed a three-tine-
star pattern, or three overlapping clusters (Fig. 6): one cluster was a
linear relationship between higher-than-expected s™ and higher-
than-expected-C® individuals (i.e. they are the same individuals); a
second cluster included individuals with lower-than-expected s™,
low-s, but behaved as expected for C%; a third cluster had lower-
than-expected C¢, biased-low s™ values, and a range of s values.
This pattern appeared for each year and for both sexes, and was also
evident in C¥ - residuals versus k™ - residuals, albeit with a weaker
MIC of 0.327. If we recall that the first eigenvector is the best single-
dimension representation of the pattern of associations (e.g. the
dominant social dimension) then the appearance of strength-
assortativity may actually be due to the underlying community
structure (as revealed by C¥), where one end of the spectrum con-
stitutes the well-connected, high-s individuals central to the
network, and the other end of the spectrum is more diverse, with
two different clusters and a mixture of low and high-s individuals
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Figure 6. A five-way relationship among metric residuals and individual attributes:
residual strength-affinity (x-axis), residual eigenvector centrality (y-axis), strength
(size of symbols), sex (shape of symbols) and per year (colours). Residuals are the
observed values minus the expected values from a null model (MNM) which condi-
tions on both degree and strength. Residual values around 0 show high concordance
between observation and null-model expectation.

with low s™. Importantly, this pattern was not related to artefacts
of the sampling region as suggested by: (1) the low correlation with
measures of preferential sampling ("¢ and ¥ with a
maximum MIC of 0.177); and (2) the pattern was strongest for
weighted information (s™ versus s), rather than binary information
(k™versusk), i.e. weights should be more robust to sampling ar-
tefacts than binary information (Farine, 2014).

Considering sex, few of the metrics showed strong differences
between males and females, e.g. the five largest Jensen-Shannon
distances [0,0.693] between males and females were 0.171, 0.150,
0.138, 0.128, and 0.121 for ¢, C¢, C®-residuals, s and c"-residuals,
respectively. Rather, it was only through pairwise bivariate distri-
butions that strong differences manifested between the sexes. The
top five bivariate JS-distances were higher at 0.411, 0.411, 0.410,
0.407 and 0.400, for the pairs (c k), (c'',s), (c",T"), (c!',s™ - residuals)
and (c - residuals,k). Males tended to cluster more, had slightly
larger affinity values and were slightly more central to the network,
but there was considerable overlap and a wide range of values
among the sexes.

Modularity

Modularity scores and community partitioning showed high
agreement between the three strength-preserving null models
(bilinear, WNM and MNM), with nine out of 10 years having
identical community partitioning (Table 2). Al WNM and MNM
partitions were identical. Modularity scores varied by year more
than by null-model, with Q values in the range of 0.13—0.28 and
averaged 0.21 over all years and methods (i.e. low fragmentation).
The TNM resulted in very different communities, with a mean
Corrected Rand Index of approximately 0.54 compared to the other
three methods. The TNM estimated 145% more communities on
average than the other three methods.

DISCUSSION

Network science has a growing influence on many fields of
biology, especially behavioural ecology. As the strength of associ-
ations between animals is central to theories of social evolution,
weighted networks play an important role. Outside of behavioural
ecology, some researchers have dismissed weighted information as
redundant to binary connections. Using a null-model approach to
compare observed weighted metrics versus null-model expecta-
tions, similar to Garlaschelli and Loffredo (2008, 2009) and
Mastrandrea et al. (2014), we show how weighted information
reveals interesting insights into the social lives of dolphins and the
behaviour of certain weighted-network metrics.

In behavioural ecology, the null-model approach typically in-
volves application of permutation-based algorithms to generate
expectations of metric values under a variety of constraints (Bejder
et al., 1998). The contribution of this paper is to focus on how to
specify and sample from null models, while meeting three impor-
tant criteria: (1) the random networks are proportion-weighted w;;

Table 2
Agreement between community partitionings implied by four null models over 10
weighted networks

Bilinear WNM MNM TNM
Bilinear -
WNM 0.95 —
MNM 0.95 1 —
TNM 0.55 0.54 0.54 —

Communities were inferred by optimizing Modularity, based on the WNM, MNM,
TNM, and the original ‘bilinear’ strength-preserving model by Newman (2004).
Values are corrected Rand indices averaged over 10 networks.
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€ [0,1]; (2) we can condition on different individual-level prop-
erties, such as degree k (sum of binary connections) and strength
s’ (sum of weights of connections) as well as size and density of an
empirical network; and (3) we ensure that all other properties are
maximally randomized, like the topology and weights on the to-
pology, and thereby avoid the risk of confusing artefacts of the
randomization algorithm for social structure.

Our analysis compared the null models at three levels of
network structure (individual, population averages and sub-
communities) with different insights at each level.

(1) Inferences about weighted networks depend on how one
conditions a null-model.

(2) Higher-order network properties of dolphin networks differ
in their predictability compared to flagship examples used in
other scientific disciplines, especially clustering and
strength-assortativity.

(3) While clustering and strength-affinity were not trivially
redundant to individual-level properties, many other
network metrics yielded little extra information over their
expectations from strength-preserving null models.

(4) For the eastern gulf Shark Bay bottlenose dolphins, males
tend to cluster more than females, and the dominant social
dimension seems to be along the lines of strength-
assortativity, with high-strength and high-affinity males on
one end and a diverse constituency at the other.

(5) Null-models can often make good predictions about the
relationship between metrics values and network size N and
network density, thus facilitating comparisons between
networks across time and space.

These results would theoretically hold for any permutation or
randomization-based null-model that could likewise condition on
the expected values of individuals' strength and degree. In other
words, it is the conditioning that should characterize the null dis-
tribution of network metrics, analogous to how a Normal distri-
bution is fully specified by its mean and variance. However,
conditioning on both strength and degree is technically difficult,
and other permutation or random-graphs methods cannot neces-
sarily guarantee that their algorithms do not artificially induce
structural correlations which can be confused for genuine social
structure. This is an important point, given the large body of
network literature devoted to new algorithms that condition on or
reproduce certain properties for inference about network structure
and function (Ansmann & Lehnertz, 2011; Leskovec et al., 2010;
Prettejohn et al., 2011; Serrano et al., 2006; Watts & Strogatz,
1998). It is the principle of maximum entropy that ensures that
all other attributes such as the topology and topological-weight
correlations are maximally random.

Inferences Based on Null-models

Of the three null models we studied (constraining the degree-
sequence, TNM; the strength-sequence, WNM; and both, MNM),
the MNM had the most support by AIC and gave expected values for
individual-level metrics that were most inline with observed
values. Our results show an important difference to the studies by
Garlaschelli and Loffredo (2009) and Mastrandrea et al. (2014), who
considered many other nonsocial integer-weighted networks. They
emphasised the importance of the degree-sequence and challenged
the importance of weight information in weighted metrics. Our
results were more equivocal: some weighted metrics were more
predictable according to the degree-sequence, while other metrics
were more predictable based on the strength-sequence. Therefore,
we emphasize that it is more conservative to base inferences on

null models which incorporate both strength- and degree-
sequences (i.e. the MNM). Conditioning on both ensures that a
larger set of possible metrics are genuinely informative about
structure beyond mere individual-level properties, and that our
conclusions are not due to an arbitrary decision of whether we
conditioned on the strength- or degree-sequence.

Although it may seem obvious that a more complex model
would better fit observations than simpler ones, this does not mean
that conditioning on more properties is necessarily ‘better’. This
way of thinking hails from the ‘generative model’ line of inquiry,
such as regression analyses, which try to explain as-best-as-
possible how data arose. Instead, the null-model approach is to
compare an observed statistic to its expectation under ‘no effect’,
analogous to how one compares t statistics to a null Student-t
distribution. Here, we are interested in network metrics that do
not behave according to their expectations based on individual-
level properties. This line of inference is rooted in the notion that
social structure is a phenomenon that is more than the sum of
constituent individuals (Holland & Leinhardt, 1979). Therefore, the
question of including degree-sequence, strength-sequence or both
is a question of conditioning: what features do I want to measure
given the values of another? For example, it is well known that
network size and density explain the greatest amount of variation
in almost all network measurements (Anderson et al., 1999; van
Wijk, Stam, & Daffertshofer, 2010), and therefore, one can only
look for meaningful deviations in network metrics if they are
standardized for size and/or density.

Likewise, the degree-sequence has long been recognized as one
such key property for binary networks which demands being
conditioned upon. But for weighted networks, serious questions
have arisen about the appropriateness of either the degree- or
strength-sequence (or both) to serve this crucial conditioning role
(Garlaschelli & Loffredo, 2009; Mastrandrea et al., 2014; Newman,
2004). Our analyses suggest that both strength-sequence and
degree-sequence together are core properties for some metrics, but
not all. For example, if we were to condition on degree (TNM) and
we compare dolphins' reach values versus their expectations, we
would conclude that a persistent feature of dolphin society is for
individuals to have weaker connections among neighbours than
expected based on their number of connections. Whereas, if we
were to condition on strength (WNM) we would conclude that
they were behaving almost exactly according to expectations. If
one does not condition on both, then the information in some
network measurements will just reflect variations in strength and/
or degree-sequence, rather than meaningful higher-order structure.

One level of social structure that was not sensitive to the un-
derlying null-model was community partitioning by Modularity
optimization. For example, all three strength-preserving models,
the WNM, the MNM and the bilinear model of Newman (2004,
which is known to be biased; Squartini & Garlaschelli, 2011)
generally resulted in the same conclusions about community
structure. Large differences were only observed when comparing
the strength-preserving null models versus the degree-preserving
model (TNM): the TNM predicted a greater number of commu-
nities and much smaller communities than the WNM/MNM/
bilinear models. In the case of the Shark Bay dolphins, we are able
to a priori motivate the appropriateness of the WNM/MNM/bilinear
model partitionings versus the TNM communities, because ‘fission-
fusion’ societies are likely to have many temporary encounters (and
therefore a very dense topology) but only a fraction of these pu-
tative connection will actually reflect long-term associations.

The community partitioning results underscore the utility of
conditioning on both the degree and strength sequence: we do not
need to choose between two competing null models and two
competing community structures (TNM versus WNM), because the



226 R. W. Rankin et al. / Animal Behaviour 113 (2016) 215—228

MNM recovers the ‘correct’ structure by conditioning on both. The
MNM would be especially useful for researchers who cannot a
priori motivate the use of either a strength- or degree-preserving
null-model for community partitioning.

Higher-order Network Properties

Another insight from our null models is the lack of structural
correlations in higher-order network metrics reported in the sta-
tistical physics literature. This contrasts sharply with the state-
ments of Garlaschelli and Loffredo (2009) and Mastrandrea et al.
(2014) who declared weighted information to be mostly redun-
dant to topology. In our case, the expectations from the WNM and
MNM were more similar than those of the TNM. Our findings are
particularly striking for proportion-weighted networks, which have
a fundamental correlation between strength and degree (s; < k;).

In particular, the second- and third-order properties were not
reproduced trivially by any of the null models, unlike what was
observed by the comprehensive analyses of Mastrandrea et al.
(2014). Instead, clustering and strength/degree-affinity differed
strongly from their null-model expectations and provided rich in-
formation about the social structure of the eastern gulf Shark Bay
dolphins. Most simply, dolphins clustered more than expected and
had equal-or-lower affinity values than expected. Males, in partic-
ular, cluster more than females (Mann et al., 2012), which is
probably due to their long-term pairs and hierarchical alliances,
whereas females may associate less strongly based on factors un-
related to ‘friendship’ (e.g. reproductive status, age of calves, or
coercion by other males; Smolker et al., 1992; Scott, Mann, Watson-
Capps, Sargeant, & Connor, 2005; Frere et al., 2010; Mann et al,,
2012). The information in affinity metrics related strongly to other
metrics, especially eigenvector centrality, hinting at a more com-
plex structure than simple strength/degree assortativity: the net-
works' high-strength individuals with high-strength neighbours
constituted one end of the dominant social dimension, and also
tended to be male; while at the other end were the low-affinity
individuals with diverse strength values (Fig. 6). This was the
dominant structure of the network, around which there was a
diverse group of individuals with lower-than-expected strength-
affinity and highly unpredictable eigenvectors, who may be from
other subcommunities which cannot be adequately described by
the leading eigenvector. Functionally, dolphins form associations
based on shared foraging tactics, sex and kinship (Mann et al.,
2012); these and other factors cannot be expressed by network-
metrics, may be the cause behind the null models' inability to
reproduce the seemingly simple relationship of strength/degree-
assortativity.

It is not surprising that our results differ from the comprehen-
sive studies of Mastrandrea et al. (2014), given the wealth of liter-
ature on dolphin social alliances, sociality-fitness correlations and
emergent network properties (Connor, Heithaus, & Barre, 2001;
Frere et al, 2010; Kriitzen, Barré, Connor, Mann, & Sherwin,
2004; Lusseau, 2003; Stanton & Mann, 2012). It nonetheless un-
derscores the caution that behavioural ecologists must exercise
when interpreting the developments in network analysis from
other disciplines, whose subjects can span trophic webs to financial
networks. First, there is likely a fundamental difference between
social animals and the more abstract networks from the physical
sciences. Second, behavioural ecology studies are probably more
sensitive to observation error and the data-collection process,
which may mediate the importance of binary versus weighted-
information, e.g. animal networks measured by group affiliation
are more likely to have many frivolous binary connections. It re-
mains to be seen whether our conclusions about the redundancy of

certain metrics and the informativeness of higher-order metrics
will generalize to other taxa and societies.

Comparing Networks

Our null models potentially offer a way to standardize metrics
across networks of different size and density. Because open pop-
ulations of animals may have year-to-year variation in N, the
dependence of metric values on network size and density hinders
researchers' ability to compare network values over time or across
populations. It is especially problematic for researchers who wish
to monitor and estimate changes in animals' social lives over time
and due to different treatments (e.g. changes in dolphin-watch
tourism, resource extraction activities, conservation management,
etc.), but who cannot hold population and/or network size con-
stant. This problem does not have a satisfactory answer in general
(Anderson et al., 1999), and less for weighted metrics (van Wijk
et al., 2010). Even seemingly simple metrics like centrality (where
solutions exist for binary measures) have no accepted standardi-
zation candidate for weighted metrics (Kasper & Voelkl, 2009). The
null models here provided satisfactory per-year population-level
summaries, and may offer a possible standardization technique via
the difference between observed and expected values. Unfortu-
nately, this does not apply to clustering metrics.

Limitations and Future Considerations

In the broader context of network analysis, the null-model
approach has limitations. In our case, its insights are limited to
what individual attributes may be important to condition upon
(especially strength) and what network metrics may be redundant
to individual attributes. We offer no generative model of the true
underlying social process, nor do we specify how observation error
obfuscates the true social process. This is true of a lot of network
analyses using null models and network metrics, whereby metrics
are not necessarily representative of the processes that animals in
the network are influenced by, nor are they necessarily functionally
important. Furthermore, we are generally unable to make conclu-
sions about how network properties arise, such as being the
manifestation of many individual-based decisions, or whether there
is some higher-order feedback from patterns in the network itself.

Second, we do not handle confounding effects of space, time,
artefacts of the survey design or observation error, which are a
major preoccupation in others fields of animal ecology. In our case,
any spatial processes or observation errors are taken as a given
inasmuch as they manifest in individuals' degree or strength. On
this issue, permutation and random-graph algorithms may be
better able to account for observation error, survey design and
inherent problems with inferring associations from group-
membership data. Investigators need to judge what may be the
greatest source of bias for their particular research questions. Ul-
timately, the field needs better generative models, such as those
common to sociology (e.g. Exponential Random Graphs or Sto-
chastic Actor-Oriented Models, Pinter-Wollman et al. 2014), which
can incorporate node-level covariates, exogenous covariates and
dynamic processes. While these techniques are widely used for
binary and integer-weighted networks, there is currently no
obvious formulation for proportion-weighted networks.

The insights from null models can aid in the development of
such generative models, especially in terms of finding worthy
summary statistics that one may use within approximate-
likelihood or simulation-based inference (see for example
Ratmann et al., 2007, who specified a generative protein network
model using simulation-based, likelihood-free inference). Our re-
sults suggest that despite the overwhelming number of possible
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network metrics, many of them, including reach, disparity and
various centrality measures, are highly redundant to strength- and/
or degree-sequence. Therefore, researchers seeking to develop
complex generative models of network formation will probably
need to focus on higher-order properties such as betweenness and
clustering. In fact, Ratmann et al. (2007) found that using lower-
level network metrics could even lead to inconsistent estimates.

Until the time that generative models are developed, inference
by null models will remain an important tool. Therefore, it is
important for behavioural ecologists to understand how their
conclusions depend on the assumptions and constraints of their
null models.
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APPENDIX

This appendix outlines the method for calculating the expecta-
tion of an individual's network metric ¢; for an observed
proportion-weighted network. We denote an empirical weighted
network interchangeably with its symmetric weight matrix W,
consisting of N nodes/individuals. Associations between individuals
i and j are indexed by the elements w; € [0,1]. The empirical
network has properties 0 that are used to constrain a null-model,
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such as the observed degree-sequence ? strength-sequence s, or
both.

To calculate a metric's expected
Egl= X P(W/|7)q(w’), the challenge is specify the probabil-

We 7w

ity of a weighted-network P(W|7), conditioned on @, and to
sample from it. To do so, we use the maximum entropy ensemble of
weighted networks, 77", subject to constraints of 7, to define this
probability distribution. The Exponential Random Graph formula-
tion allows us to specify the ‘canonical’ ensemble of networks for an
empirical network (Garlaschelli & Loffredo, 2008, 2009), whose
expected values of # are the empirical network's values, i.e.

E[6] = 6. In statistical mechanics, this contrasts with the ‘micro-
canonical’ ensemble, whereby every constituent random-network

value

W' e 7 has exactly the same @ as observed empirically, which is
most common among permutation-based algorithms. Note that the
number of random-networks in the canonical ensemble is at least
as great (and likely much greater) than the number of random-
networks in the microcanonical ensemble, and therefore has
greater entropy, i.e. more randomness among all other topological
and weight-distribution characteristics.

We approximate E[c;] with (c;), using a large sample of size m of
random networks 7, from the ensemble 77", each drawn with
probability P(W’{?),

2we rnGiW)

[E[c,-]z<c,> :+ (2)

The probability of a proportion-weighted network P(W|7)
under constraints is formulated according to the Exponential
Random Graph Model:

~H(W[T)
PW[#) = —— = (3)
5= e D)

A realization of a weighted network is proportional to e, the
inverse of the exponential of the Graph Hamiltonian H. The Graph
Hamiltonian H specifies the condiLioning on observed properties 7,
i.e. it contains parameters @ and b which can be optimized so as to
make the observed quantities 9 match the ensemble averages (7).
According to Garlaschelli and Loffredo (2009), the Hamiltonian of
the TNM, WNM and MNM are:

Hrnm ( W‘ a) Z Oélk = Z aj + DLJ)I(WU) (4)
i<j
HWNM (W‘F) Zlglsl - Z :81 + 5])W1] (5)
i<j

Hyivm (W‘a F) = Z(aiki + Bisi)
= (e + )T (wyy) +

i<j

(Bi + Bj)wy) (6)

where I(w) is the indicator function (if w > 0, then 1, otherwise 0),

ki = >~ I(wy) is the degree of node i, and s; = )~ wj; is the strength
i%j i#]

of node i. Often, it is easier to work with reparametrized versions
of the Hamiltonian parameters: x;=e~% and y;=e%. The pa-
rameters X and y can be related to the probability of a realization
of a weighted network W by considering the probability as the
product of probabilities of individual edge weights:
P(W|x,y) = T] q(w;j|x,y), where q(wy) is the probability that the

i<j

weight between nodes i and j is w. For the WNM and MNM null
models, we can therefore define the probability of a weight w;
as a function of the node parameters x;x;,y; and y;:

Wij

(X,'X ) (WU) (.VIYJ>
1+ X / .L (yiyj>w*dw*

(xx) 1w )<y yJ> Ulog(y,-yj)
- XiXjyiyj — XiX; + log (yiyj)

a(wylx.y) =

(7)

The TNM is derived similarly from its Hamiltonian. The proba-
bility of a nonzero link is therefore p(w;;>0) = 1 — q(w;; = 0).

The ensembles are defined by specifying the constraints and
solving X and y'. For the WNM, this means setting the expected
value of nodes' strength to their observed values, (s;) = s?bs, where
(s;) is the sum of the expected weights (w;;). For the TNM, we set the
expected values of the nodes' degree to their observed values,
(ki) = k?bs, whereby (k;) is the sum of probabilities of a link. For the
MNM, we set the expected degree-sequence and the expected
strength-sequence to their observed values.

1
<Wif>= / wrq(w*|x,y)dw
w=0

Xix;yiyjlog <Yin> — XiXjYi¥j + XiX;

- (8)
log? (_Viyj) a (Xixjyiyj xjxi)log(yiyo
<ki> = E p(w;;>0|x,y) = Z(l —q(wj; = 0[x,y)) = ko
Jj#i =
9)

<s,-> = Z<Wu> sobs (10)
j=i

Equations (9) and (10) constitute the system of equations
specified by the constraints (s;) =s? andfor (k;) = k%S with
Lagrangian multipliers x; >0 and/or y; > 0. We found fast and ac-
curate solutions to our parameters using the package Rsolnp
(Ghalanos & Theussl, 2012; Ye, 1987) in the R programming lan-
guage and environment (R Core Team, 2014). For the MNM, there
are 2N parameters to solve, constrained by both strength and de-
gree. For the WNM, there are N parameters to solve, whereby
strength is preserved by setting x =1V and re-solving
y MNM;t Vwam- The TNM likewise has N parameters to solve
X 1nm # X mnm- In all cases, both topology and weights are maxi-
mally randomized subject to these constraints.

The cumulative distribution function (CDF) can then be used to
sample weights wj; from their appropriate distribution. By sampling
wj;j for all i < j from their appropriate distribution, we also sample
random networks from their appropriate distribution P(W). For the
MNM and WNM, the CDF has the form:

X (v vy~ 1)
XiX;yiyj — XiX; + log (y,-yj)

CDF(w*|x,y) = q(Ox,y) + (11)

The analysis proceeds by: (1) solving the Lagrangian multipliers
X and ¥; (2) sampling a large number networks from P(W|X', J');
(3) then calculating metric expectations according to equation (2).
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